Sign test  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Sign test  $z$ test for the difference between two proportions 


Independent variable  Independent/grouping variable  
2 paired groups  One categorical with 2 independent groups  
Dependent variable  Dependent variable  
One of ordinal level  One categorical with 2 independent groups  
Null hypothesis  Null hypothesis  
 H_{0}: $\pi_1 = \pi_2$
$\pi_1$ is the population proportion of 'successes' for group 1; $\pi_2$ is the population proportion of 'successes' for group 2  
Alternative hypothesis  Alternative hypothesis  
 H_{1} two sided: $\pi_1 \neq \pi_2$ H_{1} right sided: $\pi_1 > \pi_2$ H_{1} left sided: $\pi_1 < \pi_2$  
Assumptions  Assumptions  

 
Test statistic  Test statistic  
$W = $ number of difference scores that is larger than 0  $z = \dfrac{p_1  p_2}{\sqrt{p(1  p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
$p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, $n_2$ is the sample size of group 2 Note: we could just as well compute $p_2  p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1$  
Sampling distribution of $W$ if H_{0} were true  Sampling distribution of $z$ if H_{0} were true  
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $p$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $p = 0.5$.
If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $np = n \times 0.5$ and standard deviation $\sqrt{np(1p)} = \sqrt{n \times 0.5(1  0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W  n \times 0.5}{\sqrt{n \times 0.5(1  0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.  Approximately the standard normal distribution  
Significant?  Significant?  
If $n$ is small, the table for the binomial distribution should be used: Two sided:
If $n$ is large, the table for standard normal probabilities can be used: Two sided:
 Two sided:
 
n.a.  Approximate $C\%$ confidence interval for $\pi_1  \pi_2$  
  Regular (large sample):
 
Equivalent to  Equivalent to  
Two sided sign test is equivalent to
 When testing two sided: chisquared test for the relationship between two categorical variables, where both categorical variables have 2 levels  
Example context  Example context  
Do people tend to score higher on mental health after a mindfulness course?  Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.  
SPSS  SPSS  
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
 
Jamovi  Jamovi  
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
 Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples  $\chi^2$ test of association
 
Practice questions  Practice questions  