Cochran's Q test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Cochran's Q test
Two sample $t$ test - equal variances assumed
Independent/grouping variableIndependent/grouping variable
One within subject factor ($\geq 2$ related groups)One categorical with 2 independent groups
Dependent variableDependent variable
One categorical with 2 independent groupsOne quantitative of interval or ratio level
Null hypothesisNull hypothesis
H0: $\pi_1 = \pi_2 = \ldots = \pi_I$

$\pi_1$ is the population proportion of 'successes' for group 1; $\pi_2$ is the population proportion of 'successes' for group 2; $\pi_I$ is the population proportion of 'successes' for group $I$
H0: $\mu_1 = \mu_2$

$\mu_1$ is the population mean for group 1, $\mu_2$ is the population mean for group 2
Alternative hypothesisAlternative hypothesis
H1: not all population proportions are equalH1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
AssumptionsAssumptions
  • Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
  • Within each population, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in both populations: $\sigma_1 = \sigma_2$
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
Test statisticTest statistic
If a failure is scored as 0 and a success is scored as 1:

$Q = k(k - 1) \dfrac{\sum_{groups} \Big (\mbox{group total} - \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k - \mbox{block total})}$

Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores.

Before computing $Q$, first exclude blocks with equal scores in all $k$ groups.
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
$\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
n.a.Pooled standard deviation
-$s_p = \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2}{n_1 + n_2 - 2}}$
Sampling distribution of $Q$ if H0 were trueSampling distribution of $t$ if H0 were true
If the number of blocks (usually the number of subjects) is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom$t$ distribution with $n_1 + n_2 - 2$ degrees of freedom
Significant?Significant?
If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided: Right sided: Left sided:
n.a.$C\%$ confidence interval for $\mu_1 - \mu_2$
-$(\bar{y}_1 - \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2 - 2}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20)

The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test.
n.a.Effect size
-Cohen's $d$:
Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$ Indicates how many standard deviations $s_p$ the two sample means are removed from each other
n.a.Visual representation
-
Two sample t test - equal variances assumed
Equivalent toEquivalent to
Friedman test, with a categorical dependent variable consisting of two independent groupsOne way ANOVA with an independent variable with 2 levels ($I$ = 2):
  • two sided two sample $t$ test equivalent to ANOVA $F$ test when $I$ = 2
  • two sample $t$ test equivalent to $t$ test for contrast when $I$ = 2
  • two sample $t$ test equivalent to $t$ test multiple comparisons when $I$ = 2

OLS regression with one categorical independent variable with 2 levels:
  • two sided two sample $t$ test equivalent to $F$ test regression model
  • two sample $t$ test equivalent to $t$ test for regression coefficient $\beta_1$
Example contextExample context
Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.
SPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
  • Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
  • Under Test Type, select Cochran's Q test
Analyze > Compare Means > Independent-Samples T Test...
  • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
  • Continue and click OK
JamoviJamovi
Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
T-Tests > Independent Samples T-Test
  • Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
  • Under Tests, select Student's (selected by default)
  • Under Hypothesis, select your alternative hypothesis
Practice questionsPractice questions