One sample Wilcoxon signedrank test  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One sample Wilcoxon signedrank test  Two sample $z$ test 


Independent variable  Independent/grouping variable  
None  One categorical with 2 independent groups  
Dependent variable  Dependent variable  
One of ordinal level  One quantitative of interval or ratio level  
Null hypothesis  Null hypothesis  
H_{0}: $m = m_0$
$m$ is the population median; $m_0$ is the population median according to the null hypothesis.  H_{0}: $\mu_1 = \mu_2$
$\mu_1$ is the population mean for group 1, $\mu_2$ is the population mean for group 2  
Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $m \neq m_0$ H_{1} right sided: $m > m_0$ H_{1} left sided: $m < m_0$  H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  
Assumptions  Assumptions  

 
Test statistic  Test statistic  
Two different types of test statistics can be used; both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
 $z = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}}$
$\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $\sigma^2_1$ is the population variance in population 1, $\sigma^2_2$ is the population variance in population 2, $n_1$ is the sample size of group 1, $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}}$ is the standard deviation of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $z$ value indicates how many of these standard deviations $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  
Sampling distribution of $W_1$ and of $W_2$ if H_{0} were true  Sampling distribution of $z$ if H_{0} were true  
Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1  \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated if ties are present in the data.  Standard normal distribution  
Significant?  Significant?  
For large samples, the table for standard normal probabilities can be used: Two sided:
 Two sided:
 
n.a.  $C\%$ confidence interval for $\mu_1  \mu_2$  
  $(\bar{y}_1  \bar{y}_2) \pm z^* \times \sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}$
where $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval) The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.  
n.a.  Visual representation  
  
Example context  Example context  
Is the median mental health score different from 50?  Is the average mental health score different between men and women? Assume that in the population, the standard devation of the mental health scores is $\sigma_1$ = 2 amongst men and $\sigma_2$ = 2.5 amongst women.  
SPSS  n.a.  
Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to:
Analyze > Nonparametric Tests > One Sample...
   
Jamovi  n.a.  
TTests > One Sample TTest
   
Practice questions  Practice questions  