One sample z test for the mean  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One sample $z$ test for the mean 


Independent variable  
None  
Dependent variable  
One quantitative of interval or ratio level  
Null hypothesis  
$\mu = \mu_0$
$\mu$ is the unknown population mean; $\mu_0$ is the population mean according to the null hypothesis  
Alternative hypothesis  
Two sided: $\mu \neq \mu_0$ Right sided: $\mu > \mu_0$ Left sided: $\mu < \mu_0$  
Assumptions  
 
Test statistic  
$z = \dfrac{\bar{y}  \mu_0}{\sigma / \sqrt{N}}$
$\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to H0, $\sigma$ is the population standard deviation, $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$  
Sampling distribution of $z$ if H0 were true  
Standard normal  
Significant?  
Two sided:
 
$C\%$ confidence interval for $\mu$  
$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval) The confidence interval for $\mu$ can also be used as significance test.  
Effect size  
Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{\sigma}$$ Indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0$  
Visual representation  
Example context  
Is the average mental health score of office workers different from $\mu_0$ = 50? Assume that the standard deviation of the mental health scores in the population is $\sigma$ = 3.  
Practice questions  