One sample z test for the mean  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One sample $z$ test for the mean  Cochran's Q test 


Independent variable  Independent/grouping variable  
None  One within subject factor ($\geq 2$ related groups)  
Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One categorical with 2 independent groups  
Null hypothesis  Null hypothesis  
H_{0}: $\mu = \mu_0$
$\mu$ is the population mean; $\mu_0$ is the population mean according to the null hypothesis  H_{0}: $\pi_1 = \pi_2 = \ldots = \pi_I$
$\pi_1$ is the population proportion of 'successes' for group 1; $\pi_2$ is the population proportion of 'successes' for group 2; $\pi_I$ is the population proportion of 'successes' for group $I$  
Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\mu \neq \mu_0$ H_{1} right sided: $\mu > \mu_0$ H_{1} left sided: $\mu < \mu_0$  H_{1}: not all population proportions are equal  
Assumptions  Assumptions  

 
Test statistic  Test statistic  
$z = \dfrac{\bar{y}  \mu_0}{\sigma / \sqrt{N}}$
$\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$.  If a failure is scored as 0 and a success is scored as 1:
$Q = k(k  1) \dfrac{\sum_{groups} \Big (\mbox{group total}  \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k  \mbox{block total})}$ Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores. Before computing $Q$, first exclude blocks with equal scores in all $k$ groups.  
Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $Q$ if H_{0} were true  
Standard normal distribution  If the number of blocks (usually the number of subjects) is large, approximately the chisquared distribution with $k  1$ degrees of freedom  
Significant?  Significant?  
Two sided:
 If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
 
$C\%$ confidence interval for $\mu$  n.a.  
$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval) The confidence interval for $\mu$ can also be used as significance test.    
Effect size  n.a.  
Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{\sigma}$$ Indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0$    
Visual representation  n.a.  
  
n.a.  Equivalent to  
  Friedman test, with a categorical dependent variable consisting of two independent groups  
Example context  Example context  
Is the average mental health score of office workers different from $\mu_0$ = 50? Assume that the standard deviation of the mental health scores in the population is $\sigma$ = 3.  Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?  
n.a.  SPSS  
  Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
 
n.a.  Jamovi  
  Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
 
Practice questions  Practice questions  