One sample z test for the mean - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

One sample $z$ test for the mean
Binomial test for a single proportion
Independent variableIndependent variable
NoneNone
Dependent variableDependent variable
One quantitative of interval or ratio levelOne categorical with 2 independent groups
Null hypothesisNull hypothesis
H0: $\mu = \mu_0$

$\mu$ is the population mean; $\mu_0$ is the population mean according to the null hypothesis
H0: $\pi = \pi_0$

$\pi$ is the population proportion of 'successes'; $\pi_0$ is the population proportion of successes according to the null hypothesis
Alternative hypothesisAlternative hypothesis
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
AssumptionsAssumptions
  • Scores are normally distributed in the population
  • Population standard deviation $\sigma$ is known
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Sample is a simple random sample from the population. That is, observations are independent of one another
Test statisticTest statistic
$z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
$\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, $N$ is the sample size.

The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$.
$X$ = number of successes in the sample
Sampling distribution of $z$ if H0 were trueSampling distribution of $X$ if H0 were true
Standard normal distributionBinomial($n$, $p$) distribution

Here $n = N$ (total sample size), and $p = \pi_0$ (population proportion according to the null hypothesis)
Significant?Significant?
Two sided: Right sided: Left sided: Two sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
$C\%$ confidence interval for $\mu$n.a.
$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)

The confidence interval for $\mu$ can also be used as significance test.
-
Effect sizen.a.
Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0$
-
Visual representationn.a.
One sample z test
-
Example contextExample context
Is the average mental health score of office workers different from $\mu_0$ = 50? Assume that the standard deviation of the mental health scores in the population is $\sigma$ = 3.Is the proportion of smokers amongst office workers different from $\pi_0 = .2$?
n.a.SPSS
-Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
  • Put your dichotomous variable in the box below Test Variable List
  • Fill in the value for $\pi_0$ in the box next to Test Proportion
n.a.Jamovi
-Frequencies > 2 Outcomes - Binomial test
  • Put your dichotomous variable in the white box at the right
  • Fill in the value for $\pi_0$ in the box next to Test value
  • Under Hypothesis, select your alternative hypothesis
Practice questionsPractice questions