One sample t test for the mean  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One sample $t$ test for the mean  Spearman's rho 


Independent variable  Independent variable  
None  One of ordinal level  
Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One of ordinal level  
Null hypothesis  Null hypothesis  
$\mu = \mu_0$
$\mu$ is the unknown population mean; $\mu_0$ is the population mean according to the null hypothesis  $\rho_s = 0$
$\rho_s$ is the unknown Spearman correlation in the population. In words: there is no monotonic relationship between the two variables in the population  
Alternative hypothesis  Alternative hypothesis  
Two sided: $\mu \neq \mu_0$ Right sided: $\mu > \mu_0$ Left sided: $\mu < \mu_0$  Two sided: $\rho_s \neq 0$ Right sided: $\rho_s > 0$ Left sided: $\rho_s < 0$  
Assumptions  Assumptions  
 Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: this assumption is only important for the significance test, not for the correlation coefficient itself. The correlation coefficient itself just measures the strength of the monotonic relationship between two variables.  
Test statistic  Test statistic  
$t = \dfrac{\bar{y}  \mu_0}{s / \sqrt{N}}$
$\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to H0, $s$ is the sample standard deviation, $N$ is the sample size. The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$  $t = \dfrac{r_s \times \sqrt{N  2}}{\sqrt{1  r_s^2}} $ where $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.  
Sampling distribution of $t$ if H0 were true  Sampling distribution of $t$ if H0 were true  
$t$ distribution with $N  1$ degrees of freedom  Approximately a $t$ distribution with $N  2$ degrees of freedom  
Significant?  Significant?  
Two sided:
 Two sided:
 
$C\%$ confidence interval for $\mu$  n.a.  
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20) The confidence interval for $\mu$ can also be used as significance test.    
Effect size  n.a.  
Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{s}$$ Indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0$    
Visual representation  n.a.  
  
Example context  Example context  
Is the average mental health score of office workers different from $\mu_0$ = 50?  Is there a monotonic relationship between physical health and mental health?  
SPSS  SPSS  
Analyze > Compare Means > OneSample T Test...
 Analyze > Correlate > Bivariate...
 
Jamovi  Jamovi  
TTests > One Sample TTest
 Regression > Correlation Matrix
 
Practice questions  Practice questions  