One sample t test for the mean - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

One sample $t$ test for the mean
Spearman's rho
Independent variableIndependent variable
NoneOne of ordinal level
Dependent variableDependent variable
One quantitative of interval or ratio levelOne of ordinal level
Null hypothesisNull hypothesis
$\mu = \mu_0$
$\mu$ is the unknown population mean; $\mu_0$ is the population mean according to the null hypothesis
$\rho_s = 0$
$\rho_s$ is the unknown Spearman correlation in the population.

In words:
there is no monotonic relationship between the two variables in the population
Alternative hypothesisAlternative hypothesis
Two sided: $\mu \neq \mu_0$
Right sided: $\mu > \mu_0$
Left sided: $\mu < \mu_0$
Two sided: $\rho_s \neq 0$
Right sided: $\rho_s > 0$
Left sided: $\rho_s < 0$
AssumptionsAssumptions
  • Scores are normally distributed in the population
  • Sample is a simple random sample from the population. That is, observations are independent of one another
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another

Note: this assumption is only important for the significance test, not for the correlation coefficient itself. The correlation coefficient itself just measures the strength of the monotonic relationship between two variables.
Test statisticTest statistic
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
$\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to H0, $s$ is the sample standard deviation, $N$ is the sample size.

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$
$t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $
where $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.
Sampling distribution of $t$ if H0 were trueSampling distribution of $t$ if H0 were true
$t$ distribution with $N - 1$ degrees of freedomApproximately a $t$ distribution with $N - 2$ degrees of freedom
Significant?Significant?
Two sided: Right sided: Left sided: Two sided: Right sided: Left sided:
$C\%$ confidence interval for $\mu$n.a.
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20)

The confidence interval for $\mu$ can also be used as significance test.
-
Effect sizen.a.
Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0$
-
Visual representationn.a.
One sample t test
-
Example contextExample context
Is the average mental health score of office workers different from $\mu_0$ = 50?Is there a monotonic relationship between physical health and mental health?
SPSSSPSS
Analyze > Compare Means > One-Sample T Test...
  • Put your variable in the box below Test Variable(s)
  • Fill in the value for $\mu_0$ in the box next to Test Value
Analyze > Correlate > Bivariate...
  • Put your two variables in the box below Variables
  • Under Correlation Coefficients, select Spearman
JamoviJamovi
T-Tests > One Sample T-Test
  • Put your variable in the box below Dependent Variables
  • Under Hypothesis, fill in the value for $\mu_0$ in the box next to Test Value, and select your alternative hypothesis
Regression > Correlation Matrix
  • Put your two variables in the white box at the right
  • Under Correlation Coefficients, select Spearman
  • Under Hypothesis, select your alternative hypothesis
Practice questionsPractice questions