One sample t test for the mean - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

One sample $t$ test for the mean
Friedman test
Independent variableIndependent variable
NoneOne within subject factor ($\geq 2$ related groups)
Dependent variableDependent variable
One quantitative of interval or ratio levelOne of ordinal level
Null hypothesisNull hypothesis
$\mu = \mu_0$
$\mu$ is the unknown population mean; $\mu_0$ is the population mean according to the null hypothesis
The scores in any of the related groups are not systematically higher or lower than the scores in any of the other related groups

Note: usually, the related groups are the different measurement points

Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
Alternative hypothesisAlternative hypothesis
Two sided: $\mu \neq \mu_0$
Right sided: $\mu > \mu_0$
Left sided: $\mu < \mu_0$
The scores in some of the related groups are systematically higher or lower than the scores in other related groups
AssumptionsAssumptions
  • Scores are normally distributed in the population
  • Sample is a simple random sample from the population. That is, observations are independent of one another
Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
Test statisticTest statistic
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
$\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to H0, $s$ is the sample standard deviation, $N$ is the sample size.

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$
$Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$

Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$.

Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$.

Note: if ties are present in the data, the formula for $Q$ is more complicated.
Sampling distribution of $t$ if H0 were trueSampling distribution of $Q$ if H0 were true
$t$ distribution with $N - 1$ degrees of freedomIf the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.

For small samples, the exact distribution of $Q$ should be used.
Significant?Significant?
Two sided: Right sided: Left sided: If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
$C\%$ confidence interval for $\mu$n.a.
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20)

The confidence interval for $\mu$ can also be used as significance test.
-
Effect sizen.a.
Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0$
-
Visual representationn.a.
One sample t test
-
Example contextExample context
Is the average mental health score of office workers different from $\mu_0$ = 50?Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-interventiom), and measurement point 3 (6 weeks post-intervention)?
SPSSSPSS
Analyze > Compare Means > One-Sample T Test...
  • Put your variable in the box below Test Variable(s)
  • Fill in the value for $\mu_0$ in the box next to Test Value
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
  • Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
  • Under Test Type, select the Friedman test
JamoviJamovi
T-Tests > One Sample T-Test
  • Put your variable in the box below Dependent Variables
  • Under Hypothesis, fill in the value for $\mu_0$ in the box next to Test Value, and select your alternative hypothesis
ANOVA > Repeated Measures ANOVA - Friedman
  • Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
Practice questionsPractice questions