One sample t test for the mean  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One sample $t$ test for the mean  Sign test 


Independent variable  Independent variable  
None  2 paired groups  
Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One of ordinal level  
Null hypothesis  Null hypothesis  
$\mu = \mu_0$
$\mu$ is the unknown population mean; $\mu_0$ is the population mean according to the null hypothesis 
 
Alternative hypothesis  Alternative hypothesis  
Two sided: $\mu \neq \mu_0$ Right sided: $\mu > \mu_0$ Left sided: $\mu < \mu_0$ 
 
Assumptions  Assumptions  
 Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another  
Test statistic  Test statistic  
$t = \dfrac{\bar{y}  \mu_0}{s / \sqrt{N}}$
$\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to H0, $s$ is the sample standard deviation, $N$ is the sample size. The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$  $W = $ number of difference scores that is larger than 0  
Sampling distribution of $t$ if H0 were true  Sampling distribution of $W$ if H0 were true  
$t$ distribution with $N  1$ degrees of freedom  The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $p$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $p = 0.5$.
If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $np = n \times 0.5$ and standard deviation $\sqrt{np(1p)} = \sqrt{n \times 0.5(1  0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W  n \times 0.5}{\sqrt{n \times 0.5(1  0.5)}}$$ follows approximately a standard normal distribution if the null hypothesis were true.  
Significant?  Significant?  
Two sided:
 If $n$ is small, the table for the binomial distribution should be used: Two sided:
If $n$ is large, the table for standard normal probabilities can be used: Two sided:
 
$C\%$ confidence interval for $\mu$  n.a.  
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20) The confidence interval for $\mu$ can also be used as significance test.    
Effect size  n.a.  
Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{s}$$ Indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0$    
Visual representation  n.a.  
  
n.a.  Equivalent to  
 
Two sided sign test is equivalent to
 
Example context  Example context  
Is the average mental health score of office workers different from $\mu_0$ = 50?  Do people tend to score higher on mental health after a mindfulness course?  
SPSS  SPSS  
Analyze > Compare Means > OneSample T Test...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 
Jamovi  Jamovi  
TTests > One Sample TTest
 Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
 
Practice questions  Practice questions  