One sample t test for the mean  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One sample $t$ test for the mean  Wilcoxon signedrank test 


Independent variable  Independent variable  
None  2 paired groups  
Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One quantitative of interval or ratio level  
Null hypothesis  Null hypothesis  
$\mu = \mu_0$
$\mu$ is the unknown population mean; $\mu_0$ is the population mean according to the null hypothesis  $m = 0$
$m$ is the unknown population median of the difference scores Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.  
Alternative hypothesis  Alternative hypothesis  
Two sided: $\mu \neq \mu_0$ Right sided: $\mu > \mu_0$ Left sided: $\mu < \mu_0$ 
 
Assumptions  Assumptions  

 
Test statistic  Test statistic  
$t = \dfrac{\bar{y}  \mu_0}{s / \sqrt{N}}$
$\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to H0, $s$ is the sample standard deviation, $N$ is the sample size. The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$  Two different types of test statistics can be used; both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
 
Sampling distribution of $t$ if H0 were true  Sampling distribution of $W_1$ and of $W_2$ if H0 were true  
$t$ distribution with $N  1$ degrees of freedom  Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1  \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately a standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately a standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated if ties are present in the data.  
Significant?  Significant?  
Two sided:
 For large samples, the table for standard normal probabilities can be used: Two sided:
 
$C\%$ confidence interval for $\mu$  n.a.  
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20) The confidence interval for $\mu$ can also be used as significance test.    
Effect size  n.a.  
Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{s}$$ Indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0$    
Visual representation  n.a.  
  
Example context  Example context  
Is the average mental health score of office workers different from $\mu_0$ = 50?  Is the median of the differences between the mental health scores before and after an intervention different from 0?  
SPSS  SPSS  
Analyze > Compare Means > OneSample T Test...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 
Jamovi  Jamovi  
TTests > One Sample TTest
 TTests > Paired Samples TTest
 
Practice questions  Practice questions  