Kruskal-Wallis test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Kruskal-Wallis test
Two sample $t$ test - equal variances assumed
One sample $t$ test for the mean
You cannot compare more than 3 methods
Independent/grouping variableIndependent/grouping variableIndependent variable
One categorical with $I$ independent groups ($I \geqslant 2$)One categorical with 2 independent groupsNone
Dependent variableDependent variableDependent variable
One of ordinal levelOne quantitative of interval or ratio levelOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesis
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
  • H0: the population medians for the $I$ groups are equal
Else:
Formulation 1:
  • H0: the population scores in any of the $I$ groups are not systematically higher or lower than the population scores in any of the other groups
Formulation 2:
  • H0: P(an observation from population $g$ exceeds an observation from population $h$) = P(an observation from population $h$ exceeds an observation from population $g$), for each pair of groups.
Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
H0: $\mu = \mu_0$

Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.
Alternative hypothesisAlternative hypothesisAlternative hypothesis
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
  • H1: not all of the population medians for the $I$ groups are equal
Else:
Formulation 1:
  • H1: the poplation scores in some groups are systematically higher or lower than the population scores in other groups
Formulation 2:
  • H1: for at least one pair of groups:
    P(an observation from population $g$ exceeds an observation from population $h$) $\neq$ P(an observation from population $h$ exceeds an observation from population $g$)
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
AssumptionsAssumptionsAssumptions
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2, $\ldots$, group $I$ sample is an independent SRS from population $I$. That is, within and between groups, observations are independent of one another
  • Within each population, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in both populations: $\sigma_1 = \sigma_2$
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Scores are normally distributed in the population
  • Sample is a simple random sample from the population. That is, observations are independent of one another
Test statisticTest statisticTest statistic

$H = \dfrac{12}{N (N + 1)} \sum \dfrac{R^2_i}{n_i} - 3(N + 1)$

Here $N$ is the total sample size, $R_i$ is the sum of ranks in group $i$, and $n_i$ is the sample size of group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N (N + 1)} \times \sum \frac{R^2_i}{n_i}$ and then subtract $3(N + 1)$.

Note: if ties are present in the data, the formula for $H$ is more complicated.
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, and $N$ is the sample size.

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
n.a.Pooled standard deviationn.a.
-$s_p = \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2}{n_1 + n_2 - 2}}$-
Sampling distribution of $H$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $t$ if H0 were true

For large samples, approximately the chi-squared distribution with $I - 1$ degrees of freedom.

For small samples, the exact distribution of $H$ should be used.

$t$ distribution with $n_1 + n_2 - 2$ degrees of freedom$t$ distribution with $N - 1$ degrees of freedom
Significant?Significant?Significant?
For large samples, the table with critical $X^2$ values can be used. If we denote $X^2 = H$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided: Right sided: Left sided: Two sided: Right sided: Left sided:
n.a.$C\%$ confidence interval for $\mu_1 - \mu_2$$C\%$ confidence interval for $\mu$
-$(\bar{y}_1 - \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2 - 2}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test.
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu$ can also be used as significance test.
n.a.Effect sizeEffect size
-Cohen's $d$:
Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ the two sample means are removed from each other.
Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0.$
n.a.Visual representationVisual representation
-
Two sample t test - equal variances assumed
One sample t test
n.a.Equivalent ton.a.
-One way ANOVA with an independent variable with 2 levels ($I$ = 2):
  • two sided two sample $t$ test is equivalent to ANOVA $F$ test when $I$ = 2
  • two sample $t$ test is equivalent to $t$ test for contrast when $I$ = 2
  • two sample $t$ test is equivalent to $t$ test multiple comparisons when $I$ = 2
OLS regression with one categorical independent variable with 2 levels:
  • two sided two sample $t$ test is equivalent to $F$ test regression model
  • two sample $t$ test is equivalent to $t$ test for regression coefficient $\beta_1$
-
Example contextExample contextExample context
Do people from different religions tend to score differently on social economic status? Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.Is the average mental health score of office workers different from $\mu_0 = 50$?
SPSSSPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > K Independent Samples...
  • Put your dependent variable in the box below Test Variable List and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Range... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the smallest value you have used to indicate your groups in the box next to Minimum, and the largest value you have used to indicate your groups in the box next to Maximum
  • Continue and click OK
Analyze > Compare Means > Independent-Samples T Test...
  • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
  • Continue and click OK
Analyze > Compare Means > One-Sample T Test...
  • Put your variable in the box below Test Variable(s)
  • Fill in the value for $\mu_0$ in the box next to Test Value
JamoviJamoviJamovi
ANOVA > One Way ANOVA - Kruskal-Wallis
  • Put your dependent variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
T-Tests > Independent Samples T-Test
  • Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
  • Under Tests, select Student's (selected by default)
  • Under Hypothesis, select your alternative hypothesis
T-Tests > One Sample T-Test
  • Put your variable in the box below Dependent Variables
  • Under Hypothesis, fill in the value for $\mu_0$ in the box next to Test Value, and select your alternative hypothesis
Practice questionsPractice questionsPractice questions