Goodness of fit test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Goodness of fit test
Binomial test for a single proportion
Marginal Homogeneity test / Stuart-Maxwell test
You cannot compare more than 3 methods
Independent variableIndependent variableIndependent variable
NoneNone2 paired groups
Dependent variableDependent variableDependent variable
One categorical with $J$ independent groups ($J \geqslant 2$)One categorical with 2 independent groupsOne categorical with $J$ independent groups ($J \geqslant 2$)
Null hypothesisNull hypothesisNull hypothesis
  • H0: the population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
or equivalently
  • H0: the probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$, the probability of drawing an observation from condition $J$ is $\pi_J$
H0: $\pi = \pi_0$

Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.
H0: for each category $j$ of the dependent variable, $\pi_j$ for the first paired group = $\pi_j$ for the second paired group.

Here $\pi_j$ is the population proportion in category $j.$
Alternative hypothesisAlternative hypothesisAlternative hypothesis
  • H1: the population proportions are not all as specified under the null hypothesis
or equivalently
  • H1: the probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
H1: for some categories of the dependent variable, $\pi_j$ for the first paired group $\neq$ $\pi_j$ for the second paired group.
AssumptionsAssumptionsAssumptions
  • Sample size is large enough for $X^2$ to be approximately chi-squared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Test statisticTest statisticTest statistic
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells.
$X$ = number of successes in the sampleComputing the test statistic is a bit complicated and involves matrix algebra. Unless you are following a technical course, you probably won't need to calculate it by hand.
Sampling distribution of $X^2$ if H0 were trueSampling distribution of $X$ if H0 were trueSampling distribution of the test statistic if H0 were true
Approximately the chi-squared distribution with $J - 1$ degrees of freedomBinomial($n$, $P$) distribution.

Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis).
Approximately the chi-squared distribution with $J - 1$ degrees of freedom
Significant?Significant?Significant?
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
If we denote the test statistic as $X^2$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Example contextExample contextExample context
Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$?Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$?Subjects are asked to taste three different types of mayonnaise, and to indicate which of the three types of mayonnaise they like best. They then have to drink a glass of beer, and taste and rate the three types of mayonnaise again. Does drinking a beer change which type of mayonnaise people like best?
SPSSSPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
  • Put your categorical variable in the box below Test Variable List
  • Fill in the population proportions / probabilities according to $H_0$ in the box below Expected Values. If $H_0$ states that they are all equal, just pick 'All categories equal' (default)
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
  • Put your dichotomous variable in the box below Test Variable List
  • Fill in the value for $\pi_0$ in the box next to Test Proportion
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Marginal Homogeneity test
JamoviJamovin.a.
Frequencies > N Outcomes - $\chi^2$ Goodness of fit
  • Put your categorical variable in the box below Variable
  • Click on Expected Proportions and fill in the population proportions / probabilities according to $H_0$ in the boxes below Ratio. If $H_0$ states that they are all equal, you can leave the ratios equal to the default values (1)
Frequencies > 2 Outcomes - Binomial test
  • Put your dichotomous variable in the white box at the right
  • Fill in the value for $\pi_0$ in the box next to Test value
  • Under Hypothesis, select your alternative hypothesis
-
Practice questionsPractice questionsPractice questions