Friedman test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Friedman test
Pearson correlation
One sample $t$ test for the mean
You cannot compare more than 3 methods
Independent/grouping variableVariable 1Independent variable
One within subject factor ($\geq 2$ related groups)One quantitative of interval or ratio levelNone
Dependent variableVariable 2Dependent variable
One of ordinal levelOne quantitative of interval or ratio levelOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesis
H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups

Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
H0: $\rho = \rho_0$

Here $\rho$ is the Pearson correlation in the population, and $\rho_0$ is the Pearson correlation in the population according to the null hypothesis (usually 0). The Pearson correlation is a measure for the strength and direction of the linear relationship between two variables of at least interval measurement level.
H0: $\mu = \mu_0$

Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.
Alternative hypothesisAlternative hypothesisAlternative hypothesis
H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups H1 two sided: $\rho \neq \rho_0$
H1 right sided: $\rho > \rho_0$
H1 left sided: $\rho < \rho_0$
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
AssumptionsAssumptions of test for correlationAssumptions
  • Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
  • In the population, the two variables are jointly normally distributed (this covers the normality, homoscedasticity, and linearity assumptions)
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: these assumptions are only important for the significance test and confidence interval, not for the correlation coefficient itself. The correlation coefficient just measures the strength of the linear relationship between two variables.
  • Scores are normally distributed in the population
  • Sample is a simple random sample from the population. That is, observations are independent of one another
Test statisticTest statisticTest statistic
$Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$

Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$.

Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$.

Note: if ties are present in the data, the formula for $Q$ is more complicated.
Test statistic for testing H0: $\rho = 0$:
  • $t = \dfrac{r \times \sqrt{N - 2}}{\sqrt{1 - r^2}} $
    where $r$ is the sample correlation $r = \frac{1}{N - 1} \sum_{j}\Big(\frac{x_{j} - \bar{x}}{s_x} \Big) \Big(\frac{y_{j} - \bar{y}}{s_y} \Big)$ and $N$ is the sample size
Test statistic for testing values for $\rho$ other than $\rho = 0$:
  • $z = \dfrac{r_{Fisher} - \rho_{0_{Fisher}}}{\sqrt{\dfrac{1}{N - 3}}}$
    • $r_{Fisher} = \dfrac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1 - r} \Bigg )$, where $r$ is the sample correlation
    • $\rho_{0_{Fisher}} = \dfrac{1}{2} \times \log\Bigg( \dfrac{1 + \rho_0}{1 - \rho_0} \Bigg )$, where $\rho_0$ is the population correlation according to H0
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, and $N$ is the sample size.

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
Sampling distribution of $Q$ if H0 were trueSampling distribution of $t$ and of $z$ if H0 were trueSampling distribution of $t$ if H0 were true
If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.

For small samples, the exact distribution of $Q$ should be used.
Sampling distribution of $t$:
  • $t$ distribution with $N - 2$ degrees of freedom
Sampling distribution of $z$:
  • Approximately the standard normal distribution
$t$ distribution with $N - 1$ degrees of freedom
Significant?Significant?Significant?
If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided: $t$ Test right sided: $t$ Test left sided: $z$ Test two sided: $z$ Test right sided: $z$ Test left sided: Two sided: Right sided: Left sided:
n.a.Approximate $C$% confidence interval for $\rho$$C\%$ confidence interval for $\mu$
-First compute the approximate $C$% confidence interval for $\rho_{Fisher}$:
  • $lower_{Fisher} = r_{Fisher} - z^* \times \sqrt{\dfrac{1}{N - 3}}$
  • $upper_{Fisher} = r_{Fisher} + z^* \times \sqrt{\dfrac{1}{N - 3}}$
where $r_{Fisher} = \frac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1 - r} \Bigg )$ and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
Then transform back to get the approximate $C$% confidence interval for $\rho$:
  • lower bound = $\dfrac{e^{2 \times lower_{Fisher}} - 1}{e^{2 \times lower_{Fisher}} + 1}$
  • upper bound = $\dfrac{e^{2 \times upper_{Fisher}} - 1}{e^{2 \times upper_{Fisher}} + 1}$
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu$ can also be used as significance test.
n.a.Properties of the Pearson correlation coefficientEffect size
-
  • The Pearson correlation coefficient is a measure for the linear relationship between two quantitative variables.
  • The Pearson correlation coefficient squared reflects the proportion of variance explained in one variable by the other variable.
  • The Pearson correlation coefficient can take on values between -1 (perfect negative relationship) and 1 (perfect positive relationship). A value of 0 means no linear relationship.
  • The absolute size of the Pearson correlation coefficient is not affected by any linear transformation of the variables. However, the sign of the Pearson correlation will flip when the scores on one of the two variables are multiplied by a negative number (reversing the direction of measurement of that variable).
    For example:
    • the correlation between $x$ and $y$ is equivalent to the correlation between $3x + 5$ and $2y - 6$.
    • the absolute value of the correlation between $x$ and $y$ is equivalent to the absolute value of the correlation between $-3x + 5$ and $2y - 6$. However, the signs of the two correlation coefficients will be in opposite directions, due to the multiplication of $x$ by $-3$.
  • The Pearson correlation coefficient does not say anything about causality.
  • The Pearson correlation coefficient is sensitive to outliers.
Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0.$
n.a.n.a.Visual representation
--
One sample t test
n.a.Equivalent ton.a.
-OLS regression with one independent variable:
  • $b_1 = r \times \frac{s_y}{s_x}$
  • Results significance test ($t$ and $p$ value) testing $H_0$: $\beta_1 = 0$ are equivalent to results significance test testing $H_0$: $\rho = 0$
-
Example contextExample contextExample context
Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)?Is there a linear relationship between physical health and mental health?Is the average mental health score of office workers different from $\mu_0 = 50$?
SPSSSPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
  • Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
  • Under Test Type, select the Friedman test
Analyze > Correlate > Bivariate...
  • Put your two variables in the box below Variables
Analyze > Compare Means > One-Sample T Test...
  • Put your variable in the box below Test Variable(s)
  • Fill in the value for $\mu_0$ in the box next to Test Value
JamoviJamoviJamovi
ANOVA > Repeated Measures ANOVA - Friedman
  • Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
Regression > Correlation Matrix
  • Put your two variables in the white box at the right
  • Under Correlation Coefficients, select Pearson (selected by default)
  • Under Hypothesis, select your alternative hypothesis
T-Tests > One Sample T-Test
  • Put your variable in the box below Dependent Variables
  • Under Hypothesis, fill in the value for $\mu_0$ in the box next to Test Value, and select your alternative hypothesis
Practice questionsPractice questionsPractice questions