Sign test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Sign test
Binomial test for a single proportion
Sign test
Independent variableIndependent variableIndependent variable
2 paired groupsNone2 paired groups
Dependent variableDependent variableDependent variable
One of ordinal levelOne categorical with 2 independent groupsOne of ordinal level
Null hypothesisNull hypothesisNull hypothesis
  • H0: P(first score of a pair exceeds second score of a pair) = P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H0: the population median of the difference scores is equal to zero
A difference score is the difference between the first score of a pair and the second score of a pair.
H0: $\pi = \pi_0$

Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.
  • H0: P(first score of a pair exceeds second score of a pair) = P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H0: the population median of the difference scores is equal to zero
A difference score is the difference between the first score of a pair and the second score of a pair.
Alternative hypothesisAlternative hypothesisAlternative hypothesis
  • H1 two sided: P(first score of a pair exceeds second score of a pair) $\neq$ P(second score of a pair exceeds first score of a pair)
  • H1 right sided: P(first score of a pair exceeds second score of a pair) > P(second score of a pair exceeds first score of a pair)
  • H1 left sided: P(first score of a pair exceeds second score of a pair) < P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H1 two sided: the population median of the difference scores is different from zero
  • H1 right sided: the population median of the difference scores is larger than zero
  • H1 left sided: the population median of the difference scores is smaller than zero
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
  • H1 two sided: P(first score of a pair exceeds second score of a pair) $\neq$ P(second score of a pair exceeds first score of a pair)
  • H1 right sided: P(first score of a pair exceeds second score of a pair) > P(second score of a pair exceeds first score of a pair)
  • H1 left sided: P(first score of a pair exceeds second score of a pair) < P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H1 two sided: the population median of the difference scores is different from zero
  • H1 right sided: the population median of the difference scores is larger than zero
  • H1 left sided: the population median of the difference scores is smaller than zero
AssumptionsAssumptionsAssumptions
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Test statisticTest statisticTest statistic
$W = $ number of difference scores that is larger than 0$X$ = number of successes in the sample$W = $ number of difference scores that is larger than 0
Sampling distribution of $W$ if H0 were trueSampling distribution of $X$ if H0 were trueSampling distribution of $W$ if H0 were true
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.

If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1-P)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.
Binomial($n$, $P$) distribution.

Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis).
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.

If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1-P)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.
Significant?Significant?Significant?
If $n$ is small, the table for the binomial distribution should be used:
Two sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$

If $n$ is large, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
Two sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
If $n$ is small, the table for the binomial distribution should be used:
Two sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$

If $n$ is large, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
Equivalent ton.a.Equivalent to
Two sided sign test is equivalent to - Two sided sign test is equivalent to
Example contextExample contextExample context
Do people tend to score higher on mental health after a mindfulness course?Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$?Do people tend to score higher on mental health after a mindfulness course?
SPSSSPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Sign test
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
  • Put your dichotomous variable in the box below Test Variable List
  • Fill in the value for $\pi_0$ in the box next to Test Proportion
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Sign test
JamoviJamoviJamovi
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the two paired variables in the box below Measures
Frequencies > 2 Outcomes - Binomial test
  • Put your dichotomous variable in the white box at the right
  • Fill in the value for $\pi_0$ in the box next to Test value
  • Under Hypothesis, select your alternative hypothesis
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the two paired variables in the box below Measures
Practice questionsPractice questionsPractice questions