Sign test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Sign test
Binomial test for a single proportion
Paired sample $t$ test
Two way ANOVA
Independent variableIndependent variableIndependent variableIndependent/grouping variables
2 paired groupsNone2 paired groupsTwo categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$)
Dependent variableDependent variableDependent variableDependent variable
One of ordinal levelOne categorical with 2 independent groupsOne quantitative of interval or ratio levelOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesisNull hypothesis
  • H0: P(first score of a pair exceeds second score of a pair) = P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H0: the population median of the difference scores is equal to zero
A difference score is the difference between the first score of a pair and the second score of a pair.
H0: $\pi = \pi_0$

Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.
H0: $\mu = \mu_0$

Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.
ANOVA $F$ tests:
  • H0 for main and interaction effects together (model): no main effects and interaction effect
  • H0 for independent variable A: no main effect for A
  • H0 for independent variable B: no main effect for B
  • H0 for the interaction term: no interaction effect between A and B
Like in one way ANOVA, we can also perform $t$ tests for specific contrasts and multiple comparisons. This is more advanced stuff.
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
  • H1 two sided: P(first score of a pair exceeds second score of a pair) $\neq$ P(second score of a pair exceeds first score of a pair)
  • H1 right sided: P(first score of a pair exceeds second score of a pair) > P(second score of a pair exceeds first score of a pair)
  • H1 left sided: P(first score of a pair exceeds second score of a pair) < P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H1 two sided: the population median of the difference scores is different from zero
  • H1 right sided: the population median of the difference scores is larger than zero
  • H1 left sided: the population median of the difference scores is smaller than zero
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
ANOVA $F$ tests:
  • H1 for main and interaction effects together (model): there is a main effect for A, and/or for B, and/or an interaction effect
  • H1 for independent variable A: there is a main effect for A
  • H1 for independent variable B: there is a main effect for B
  • H1 for the interaction term: there is an interaction effect between A and B
AssumptionsAssumptionsAssumptionsAssumptions
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Difference scores are normally distributed in the population
  • Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
  • Within each of the $I \times J$ populations, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in each of the $I \times J$ populations
  • For each of the $I \times J$ groups, the sample is an independent and simple random sample from the population defined by that group. That is, within and between groups, observations are independent of one another
  • Equal sample sizes for each group make the interpretation of the ANOVA output easier (unequal sample sizes result in overlap in the sum of squares; this is advanced stuff)
Test statisticTest statisticTest statisticTest statistic
$W = $ number of difference scores that is larger than 0$X$ = number of successes in the sample$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores).

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
For main and interaction effects together (model):
  • $F = \dfrac{\mbox{mean square model}}{\mbox{mean square error}}$
For independent variable A:
  • $F = \dfrac{\mbox{mean square A}}{\mbox{mean square error}}$
For independent variable B:
  • $F = \dfrac{\mbox{mean square B}}{\mbox{mean square error}}$
For the interaction term:
  • $F = \dfrac{\mbox{mean square interaction}}{\mbox{mean square error}}$
Note: mean square error is also known as mean square residual or mean square within.
n.a.n.a.n.a.Pooled standard deviation
---$ \begin{aligned} s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - (I \times J)}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $
Sampling distribution of $W$ if H0 were trueSampling distribution of $X$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $F$ if H0 were true
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.

If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1-P)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.
Binomial($n$, $P$) distribution.

Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis).
$t$ distribution with $N - 1$ degrees of freedomFor main and interaction effects together (model):
  • $F$ distribution with $(I - 1) + (J - 1) + (I - 1) \times (J - 1)$ (df model, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For independent variable A:
  • $F$ distribution with $I - 1$ (df A, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For independent variable B:
  • $F$ distribution with $J - 1$ (df B, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For the interaction term:
  • $F$ distribution with $(I - 1) \times (J - 1)$ (df interaction, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
Here $N$ is the total sample size.
Significant?Significant?Significant?Significant?
If $n$ is small, the table for the binomial distribution should be used:
Two sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$

If $n$ is large, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
Two sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Two sided: Right sided: Left sided:
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
n.a.n.a.$C\%$ confidence interval for $\mu$n.a.
--$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu$ can also be used as significance test.
-
n.a.n.a.Effect sizeEffect size
--Cohen's $d$:
Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$
  • Proportion variance explained $R^2$:
    Proportion variance of the dependent variable $y$ explained by the independent variables and the interaction effect together:
    $$ \begin{align} R^2 &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}} \end{align} $$ $R^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\eta^2$:
    Proportion variance of the dependent variable $y$ explained by an independent variable or interaction effect:
    $$ \begin{align} \eta^2_A &= \dfrac{\mbox{sum of squares A}}{\mbox{sum of squares total}}\\ \\ \eta^2_B &= \dfrac{\mbox{sum of squares B}}{\mbox{sum of squares total}}\\ \\ \eta^2_{int} &= \dfrac{\mbox{sum of squares int}}{\mbox{sum of squares total}} \end{align} $$ $\eta^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\omega^2$:
    Corrects for the positive bias in $\eta^2$ and is equal to:
    $$ \begin{align} \omega^2_A &= \dfrac{\mbox{sum of squares A} - \mbox{degrees of freedom A} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \\ \omega^2_B &= \dfrac{\mbox{sum of squares B} - \mbox{degrees of freedom B} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \\ \omega^2_{int} &= \dfrac{\mbox{sum of squares int} - \mbox{degrees of freedom int} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \end{align} $$ $\omega^2$ is a better estimate of the explained variance in the population than $\eta^2$. Only for balanced designs (equal sample sizes).

  • Proportion variance explained $\eta^2_{partial}$: $$ \begin{align} \eta^2_{partial\,A} &= \frac{\mbox{sum of squares A}}{\mbox{sum of squares A} + \mbox{sum of squares error}}\\ \\ \eta^2_{partial\,B} &= \frac{\mbox{sum of squares B}}{\mbox{sum of squares B} + \mbox{sum of squares error}}\\ \\ \eta^2_{partial\,int} &= \frac{\mbox{sum of squares int}}{\mbox{sum of squares int} + \mbox{sum of squares error}} \end{align} $$
n.a.n.a.Visual representationn.a.
--
Paired sample t test
-
n.a.n.a.n.a.ANOVA table
---
two way ANOVA table
Equivalent ton.a.Equivalent toEquivalent to
Two sided sign test is equivalent to -
  • One sample $t$ test on the difference scores.
  • Repeated measures ANOVA with one dichotomous within subjects factor.
OLS regression with two categorical independent variables and the interaction term, transformed into $(I - 1)$ + $(J - 1)$ + $(I - 1) \times (J - 1)$ code variables.
Example contextExample contextExample contextExample context
Do people tend to score higher on mental health after a mindfulness course?Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$?Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender?
SPSSSPSSSPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Sign test
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
  • Put your dichotomous variable in the box below Test Variable List
  • Fill in the value for $\pi_0$ in the box next to Test Proportion
Analyze > Compare Means > Paired-Samples T Test...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
Analyze > General Linear Model > Univariate...
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factor(s)
JamoviJamoviJamoviJamovi
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the two paired variables in the box below Measures
Frequencies > 2 Outcomes - Binomial test
  • Put your dichotomous variable in the white box at the right
  • Fill in the value for $\pi_0$ in the box next to Test value
  • Under Hypothesis, select your alternative hypothesis
T-Tests > Paired Samples T-Test
  • Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
  • Under Hypothesis, select your alternative hypothesis
ANOVA > ANOVA
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factors
Practice questionsPractice questionsPractice questionsPractice questions