Chi-squared test for the relationship between two categorical variables - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Chi-squared test for the relationship between two categorical variables
One sample $t$ test for the mean
Independent /column variableIndependent variable
One categorical with $I$ independent groups ($I \geqslant 2$)None
Dependent /row variableDependent variable
One categorical with $J$ independent groups ($J \geqslant 2$)One quantitative of interval or ratio level
Null hypothesisNull hypothesis
H0: there is no association between the row and column variable

More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
  • H0: the distribution of the dependent variable is the same in each of the $I$ populations
If there is one random sample of size $N$ from the total population:
  • H0: the row and column variables are independent
H0: $\mu = \mu_0$

Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.
Alternative hypothesisAlternative hypothesis
H1: there is an association between the row and column variable

More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
  • H1: the distribution of the dependent variable is not the same in all of the $I$ populations
If there is one random sample of size $N$ from the total population:
  • H1: the row and column variables are dependent
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
AssumptionsAssumptions
  • Sample size is large enough for $X^2$ to be approximately chi-squared distributed under the null hypothesis. Rule of thumb:
    • 2 $\times$ 2 table: all four expected cell counts are 5 or more
    • Larger than 2 $\times$ 2 tables: average of the expected cell counts is 5 or more, smallest expected cell count is 1 or more
  • There are $I$ independent simple random samples from each of $I$ populations defined by the independent variable, or there is one simple random sample from the total population
  • Scores are normally distributed in the population
  • Sample is a simple random sample from the population. That is, observations are independent of one another
Test statisticTest statistic
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells.
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, and $N$ is the sample size.

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
Sampling distribution of $X^2$ if H0 were trueSampling distribution of $t$ if H0 were true
Approximately the chi-squared distribution with $(I - 1) \times (J - 1)$ degrees of freedom$t$ distribution with $N - 1$ degrees of freedom
Significant?Significant?
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided: Right sided: Left sided:
n.a.$C\%$ confidence interval for $\mu$
-$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu$ can also be used as significance test.
n.a.Effect size
-Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0.$
n.a.Visual representation
-
One sample t test
Example contextExample context
Is there an association between economic class and gender? Is the distribution of economic class different between men and women?Is the average mental health score of office workers different from $\mu_0 = 50$?
SPSSSPSS
Analyze > Descriptive Statistics > Crosstabs...
  • Put one of your two categorical variables in the box below Row(s), and the other categorical variable in the box below Column(s)
  • Click the Statistics... button, and click on the square in front of Chi-square
  • Continue and click OK
Analyze > Compare Means > One-Sample T Test...
  • Put your variable in the box below Test Variable(s)
  • Fill in the value for $\mu_0$ in the box next to Test Value
JamoviJamovi
Frequencies > Independent Samples - $\chi^2$ test of association
  • Put one of your two categorical variables in the box below Rows, and the other categorical variable in the box below Columns
T-Tests > One Sample T-Test
  • Put your variable in the box below Dependent Variables
  • Under Hypothesis, fill in the value for $\mu_0$ in the box next to Test Value, and select your alternative hypothesis
Practice questionsPractice questions